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Abstract. In this paper, by observing the intrinsic sparsity of saliency
map for the image, we propose a novel nonlocal L0 minimization frame-
work to extract the sparse geometric structure of the saliency maps for
the natural images. Specifically, we first propose to use the k-nearest
neighbors of superpixels to construct a graph in the feature space. The
novel L0-regularized nonlocal minimization model is then developed on
the proposed graph to describe the sparsity of saliency maps. Finally,
we develop a first order optimization scheme to solve the proposed non-
convex and discrete variational problem. Experimental results on four
publicly available data sets validate that the proposed approach yields
significant improvement compared with state-of-the-art saliency detec-
tion methods.

1 Introduction

The recent years have witnessed significant advances in saliency detection [1–
6]. Visual saliency is making the most informative scene stand out from their
neighbors and grabbing immediate attention. It is originally a task of eye fixation
prediction [7–10], and recently has been extended to salient region detection [11,
12, 6, 2, 13]. Both of them can be categorized as either bottom-up [14] or top-
down [15] approaches in general. The former is fast, pre-attentive, data-driven
saliency extraction while the latter is slower, task dependent, goal driven saliency
extraction [6]. In this paper, we focus on the bottom-up salient region detection.

Most bottom-up saliency methods rely on predefined assumptions about
salient objects and backgrounds. One of the early bottom-up saliency detec-
tion methods is proposed by Itti et al. [8], which focuses on the role of color and
orientation priors. Goferman et al. [1] propose a context-aware algorithm that
represents the scene based on four assumptions of human visual attention. How-
ever, using the predefined assumptions only cannot generate maps that uniformly
cover the whole object and suppress the background well. With the emergence of
superpixels [16, 17], an increasing number of image saliency detection approaches
are proposed on region level to reduce calculation amount and receive uniform
foreground and suppressed background. One significant class among them is
graph based approaches [7, 18–24]. Yang et al. [19] propose to detect salient re-
gions in images through manifold ranking on a graph which incorporates local
grouping cues and boundary priors. Liu et al. [24] provide a diffusion viewpoint
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to model saliency detection which shows its well performance on salient region
detection. However, all the previous work start from the perspective of improv-
ing the prior and achieving good results statistically on public benchmarks, but
few of them take the characteristic of the ideal result into consideration.

We in this paper note that all of the ground truth saliency maps are bi-
nary images which contain a few intensity changes among neighboring pix-
els/superpixels. Namely, the intensity changes are very sparse. Due to the fact
that the L0 norm of a vector is the number of non-zero entries which directly
measures sparsity, we propose a graph based nonlocal L0 (NLL0 for short) min-
imization for visual saliency detection. The proposed NLL0 method is able to
capture the sparse properties of saliency maps, thereby leading to reliable results.
Furthermore, the graph construction plays a key role in graph based methods.
Different from local graphs that connect neighbor regions in the spatial space
(e.g. 1-ring and 2-ring graph), we construct a nonlocal graph based on the k-
nearest neighbors (k-NN for short) in the feature space. This k-NN graph better
extracts the structure of the image, and can generate a more uniform forward
and suppressed background. Due to the discrete nature and the non-convexity
of the proposed model, conventional convex optimization algorithm cannot be
directly used to solve it. By extending alternating direction method (ADM) [25–
27] to non-convex discrete optimization problem, this paper proposes an efficient
numerical scheme to solve our NLL0 saliency detection model. Overall, the main
contributions in this paper are summarized as follows:

– We propose a novel NLL0 model on image graph for saliency detection. As
the L0 norm is the naive metric used to describe sparsity of the gradients, the
saliency maps of our proposed model can exactly highlight the foreground
and suppress the background.

– A nonlocal graph is constructed in the feature space composed by color and
spatial position features, and each vertex in this graph is connected to its
k-NN.

– As a non-trivial by product, a first order numerical scheme is introduced to
efficiently solve the non-convex discrete NLL0 optimization model.

2 The Proposed Method

In this section, an L0 norm based minimization is introduced on image graph
to model saliency detection. For a given image, we first over segment it into
superpixels by SLIC method [16] and construct a graph based on the k-NN
of superpixels in the feature space. Then, our NLL0 minimization is proposed
on this graph incorporating with a saliency control map that is generated by
contrast and object priors.

2.1 Graph Construction

It is worth mentioning that graph construction plays a key role in graph based
methods [7, 18–21], and the connected relationship is top priority. As two classic
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graphs, 1-ring and 2-ring graph are widely used in superpixel based saliency
detection methods [18, 19]. However, 1-ring and 2-ring graph are two typical
graphs that connect neighbor elements in the spatial space (see Fig. 1(c) and
Fig. 1(d) to have an intuitive sense), which is premised on the assumption that
neighboring superpixels in the spatial space are likely to share similar saliency
values. This assumption is absolutely incorrect near the edges between the salient
and indistinctive regions thus may generate redundant regions. The example
shown in Fig. 2 also shows that with these two graphs, the background and
forward are not differentiated effectively. In this paper, we propose to construct
graph in the feature space to take nonlocal relationship into consideration (Fig.
1(e)).

(a) (b)

(c) (d) (e)

Fig. 1. The comparisons of 1-ring, 2-ring and k-NN graph. (a) The input image. (b)
The superpixels of the input image, and a yellow patch is specified. (c) The connected
relationship in 1-ring graph. (d) The connected relationship in 2-ring graph. (e) The
connected relationship in k-NN graph.

Given an image, we generate superpixels by SLIC method [16] to be the
elements of saliency estimation, denoted as a vector of N elements with cor-
responding values v = (v1, v2, · · · , vN ). It is not specific that any other edge
preserving methods to generate superpixels can be used in this place. Then we
construct an undirected, symmetric and weighted graph G. It consists a finite
set E of edges and is associated with a weight function ω : E → R+ satisfying
ωpq = ωqp, for all pq ∈ E.

The weight between superpixels p and q is expressed as:

ωpq = exp(−‖fp − fq‖2

2σ2
), (1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Well performance of our graph from quality analysis. (a) Input image. (b)
Result of 1-ring graph. (c) Result of 2-ring graph. (d) Result of k-NN graph. (e) Result
of 2-ring graph with four boundaries of the image connected. (f) Result of k-NN graph
with four boundaries of the image connected. (g) Result of our graph. (h) Ground
truth.

where fp = (αcp, lp) is a feature vector at superpixel p comprising of its appear-
ance cp (i.e.,the mean of the superpixels in CIE LAB color space) and location
lp (i.e., the mean of the coordinates of superpixels in spatial space). Parameter
α is used to control the balance between these two features, and ‖ ·‖ denotes the
L2 norm of a vector. For each superpixel p, we calculate its weight with every
other q in image domain, and find its k-NN to exploit local relationships in the
feature space. Keep these k values which indicate the most similar superpixels
of p and set all the others to zero. The connected relationship between p and q
is indicated by the nonzero ωpq. Connecting neighbors in feature space performs
well than other traditional graph construction methods from the results in the
top line of Fig. 2.

With the purpose of reducing the geodesic distance of similar superpixels that
have large spatial distance, Yang et al. [19] propose to connect the four bound-
aries of the image together in the 2-ring graph which performs well on generating
suppressed background. We further enforce that the most indistinctive regions
in saliency control map vc (is discussed in Section 2.3) and the four boundaries
of the image should be connected to each other to get a better performance. We
choose the latter 25% of the superpixels of vc in descending order as the most
indistinctive regions in our approach. The results shown in the second line of Fig.
2 indicate that the strategy of connecting boundaries and indistinctive regions
together does improve the saliency result, and our proposed method have the
best performance from both quality analysis (Fig. 2) and quantity analysis (Fig.
4(c)).
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(a) (b) (c) (d)

Fig. 3. The nonlocal gradient and its sparsity. (a) An input image. (b) The ground
truth of the input image. (c) The superpixels of the ground truth, and a specified
patch coloring in yellow. (d) The related patch (colored in cyan) when computing the
nonlocal gradient of the specified yellow patch.

2.2 NLL0 for Saliency Detection

As discussed before, the ideal result in salient region detection, i.e. the ground
truth (Fig. 3(b)), has extremely sparse gradient on superpixels. To obtain the
same property of our saliency result, we propose to minimize a variational formu-
lation based on the L0 norm of gradient. Though it is applied in many low-level
image processing problems [28–30], we first extend it for graph based visual
saliency detection. To begin with, we will introduce the basic definitions and
notations which are borrowed from Bougleux et al. in [31] and Gilboa-Osher in
[32], regarding local differential geometry operators that will be useful in the
rest of the paper.

Different from the definition of gradient on a regular image grid, the gradient
of each vertex p on the graph G is defined for pair points pq ∈ E as:

∇ωvp = (∂qvp : pq ∈ E). (2)

Specifically, ∇ωvp is a vector of all partial derivatives, i.e. ∂qvp = (vq−vp)
√
ωpq,

where ωpq is the weight between p and q as discussed in Section 2.1.
A visual example is shown in Fig. 3(d) to explain the nonlocal gradient on

graph. Suppose that p denotes the yellow region in Fig. 3(c). According to the
definition of our k-NN graph, its k-NN are denoted by the cyan patches (see Fig.
3(d)). Regarding the definition of ∇ωvp, we can conclude that most values of
∇ωvp are zero. Thus, a natural idea that depicts this property is to employ L0

norm on∇ωvp. It can also be seen that only few superpixels has nonzero gradient
in the ground truth, and that truly confirm the reliability of minimizing the L0

norm of gradient.
Based on considerations above, the proposed NLL0 model on image graph is

defined as follows:

min
v

∑
p

‖∇ωvp‖0 +
λ

2
‖v − vc‖2, (3)

where ‖∇ωvp‖0 is defined as ‖∇ωvp‖0 = ]{q|∂qvp 6= 0; pq ∈ E}3, λ is a positive
constant that controls the trade-off between the sparsity and the fidelity term.

3 The notation ′]′ is a mathematical representation which stands for the cardinality
of a set.
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The new symbol vc in the fidelity term is the saliency control map which will
be introduced in the next section.

2.3 Saliency Control Map

We in this paper use the contrast prior and object prior to compute the salient
control map vc.

We use the contrast prior for the reason that research from perceptual anal-
ysis [33] and relative works [18, 6, 34] have indicated the effectiveness of the

contrast measure. Given the mean color value cp and the weight ω
(l)
pq between

superpixel vp and vq in spatial space, the contrast measure of vp is defined as:

vconp =
∑
q 6=p

ω(l)
pq ‖cp − cq‖2, (4)

where ω
(l)
pq = exp(− 1

2σ2
l
‖lp − lq‖2) with normalized average coordinates lp and

lq.
On the other hand, object prior provides an assumption on the most likely

location of salient region. Though there are many approaches on generating
either high-level [23, 5] or low level [1, 13, 18, 35] object prior, we choose to use
low-level object prior in this paper:

vobjp = exp(−‖lp − l‖2

2σ2
c

), (5)

where l is the central coordinate position of the interest.
Then we combine the above two priors together for each superpixel vp to

generate the saliency control map vc in a simple way:

vcp = vconp × vobjp . (6)

Based on the experimental results, we use the convex-hull based center prior
[35] as the object prior vobj in this paper. More details and experimental analysis
on the influence of the object prior are conducted in Section 4.3.

3 Optimization

Our NLL0 minimization is indeed a very challenging problem due to its discrete-
ness and non-convexity. For the failure of using the traditional gradient descent
or other discrete optimization methods to optimize the problem, we propose a
problem solving strategy based on ADM which is now very popular in solving
large scale sparse representation problems [25–27].

By introducing an auxiliary variable d, our graph based NLL0 variational
model can be written in an equivalent form:
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min
d,v

∑
p

‖dp‖0 +
λ

2
(vp − vcp)2,

s.t. dp = ∇ωvp, p = 1, · · · , N.
(7)

We employ the ADM to solve problem (7). In each iteration, we alternatively
solve

vk+1 = arg min
v

∑
p

λ

2
(vp − vcp)2 +

ρ

2
‖dkp −∇ωvp +

1

ρ
ykp‖2,

dk+1 = arg min
d

∑
p

‖dp‖0 +
ρ

2
‖dp −∇ωvk+1

p +
1

ρ
ykp‖2,

yk+1
p = ykp + ρ(dk+1

p −∇ωvk+1
p ).

(8)

The solution of the subproblem on vp is characterized by its first order opti-
mality condition:

λ(vp − vcp) + ρdivω(dkp −∇ωvp +
1

ρ
ykp) = 0. (9)

Here, divωu is defined as the divergence of u, and its discretization at p can be
deduced

divωup =
∑
q

(upq − uqp)
√
ωpq, pq ∈ E. (10)

where upq is the vector element corresponding to q [32].
According to Eq. (10), the solution vk+1

p of the subproblem can be explicitly
written as:

vk+1
p =

1

λ+ 2ρ
∑
q ωpq

(λvcp

− ρ
∑
q

√
ωpq(d

k
pq − dkqp +

1

ρ
ykpq −

1

ρ
ykqp)

+ 2ρ
∑
q

ωpqv
k+1
q ).

(11)

Though vk+1 can be directly solved by a linear system, a fast approximated
solution vk+1,n+1

p is provided by a Gauss-Seidel iterative scheme, and 2 iterations
(n = 2) are enough [36] to determine a good approximation of the minimizer in
experiments:

vk+1,n+1
p =

1

λ+ 2ρ
∑
q ωpq

(λvcp

− ρ
∑
q

√
ωpq(d

k
pq − dkqp +

1

ρ
ykpq −

1

ρ
ykqp)

+ 2ρ
∑
q

ωpqv
k+1,n
q ),vk+1,n=0 = vk,

(12)
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Algorithm 1 Salient Region Detection via NLL0

Input: Given image I and necessary parameters.
Postprocessing: Generate superpixels by SLIC [16].
Output: Saliency score v of the given image. v = {vp}.
1: Construct the k-NN graph on superpixels.
2: Calculate saliency control map vc by (6).
3: Initialization: vp ← 0, dp ← 0.
4: repeat
5: while n < maxIter do
6: Compute vk+1,n+1

p by (12).
7: end while
8: Compute dk+1

p through the thresholding function (15).
9: Update the Lagrangian multiplier yk+1

p by (8).
10: until max iterations reached.

The subproblem on d is apparently sophisticated subproblem due to the
non-convexity and discontinuity of L0 norm. We can obtain its solution by the
following lemma which can be proved in the same way as [28].

Lemma 1. The optimal solution x? of the following problem:

min
x
‖x‖0 +

β

2
‖x− z‖2, (13)

is defined as: for every component xi of x,

x?i =

{
0, |zi| ≤

√
2
β ,

zi, otherwise,
(14)

According to Lemma 1, the solution dk+1
p of the subproblem on d is given

as follows:

dk+1
pq =

{
0, |∂qvk+1

p − 1
ρy

k
pq| ≤

√
2
ρ ,

∂qv
k+1
p − 1

ρy
k
pq, otherwise.

(15)

Finally, the main steps of the proposed saliency detection method are sum-
marized in Algorithm 1.

4 Experiments

Experiments taken in this paper can be divided into four parts: parameter eval-
uation in Section 4.1, comparison of graph in Section 4.2, analysis of object prior
in Section 4.3 and comparison with state-of-the-art methods in Section 4.4.
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Fig. 4. (a) Precision and recall rate for the regularization parameter λ on the ASD
data set. (b) Average precision, recall and F-measure curve with different λ parameter.
(c) Effectiveness of our graph by PR-curve. (d) Comparison of using image center prior
and convex-hull-based center prior as object control map respectively in our model.

4.1 Parameter Evaluation

We set the number of superpixels N = 300 in all the experiments. There are
5 parameters in our NLL0 method: σ and α in Eq.(1), the number of nearest
neighbors k, λ and ρ in Eq.(7). The parameters are empirically set to σ2 = 0.05,
α = 0.9, k = 5, λ = 0.001 and ρ = 0.0001.

The parameter λ is a weight directly controlling the balance between regular-
ization and fidelity, which makes an important role in our approach. We assign
λ as 0, 0.1, 0.01, 0.001, 0.0001, 1, 10 and 100 in our approach respectively. And
draw the corresponding PR-curves (Fig. 4(a)) and the average precision, recall
and F-measure curves (Fig. 4(b)) with different λ.

In particular, λ = 0 corresponds to an extreme case that only regular term
is contained in the NLL0 model. The gradient of each superpixel in the optimal
solution of this case must be zero, which corresponds to an all-black color image.
The PR-curve of λ = 0 is not drawn in Fig. 4(a) since it is a straight line from
0 to 0.2. With the increase of λ, the saliency control map vc takes a bigger
role in the NLL0 model, and more edge information is remained. But it changes
smoothly when λ > 1 (see Fig. 4(b)) and the PR-curves almost overlapped when
λ = 1, 10 and 100.

Whether according to the PR-curves (Fig. 4(a)) or the average precision,
recall and F-measure curves (Fig. 4(b)), λ = 0.001 is the best choice in our
approach, which is fixed and applied in all the experiments in this paper.

4.2 Comparison of Graph

In Section 2.1, we give an example to illustrate the effectiveness of our k-NN
graph. However, this is not sufficient. In this subsection we extensively test their
validity by using public data set. We use the precision-recall curve to show the
well performance of our graph.

Fig. 4(c) shows the comparison result of 6 different strategies to construct
graph. From the Fig. 4(c), the 2-ring graph is the worst choice for our NLL0

method, the 1-ring graph and the 2-ring graph with boundaries connected (is
used in [19]) perform almost the same. Leaving out the strategy of connecting
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the four boundaries and the most indistinctive regions together, the k-NN graph
itself performs better than the graphs constructed in the spatial space, which
furthermore indicates that the strategy of constructing graph in the feature
space can contribute to the NLL0 model. Also, the strategy that connects all
the boundaries and background together does have a better effect.

4.3 Analysis of Object Prior

In this paper, we use low-level object prior vobj in the saliency control map vc.
Certainly, different coordinate positions l of the interest will generate different
prior maps by Eq. (5). In this section, we conduct an experiment on two different
strategies for obtaining l, and the results show that our NLL0 method is robust
to these two low-level object priors.

Regarding the image center as l is a common assumption in saliency detection
[1, 13]. It hypothesizes that people taking photographs generally frame the focus
and assign higher value to the image elements near the image center. But there
always exist some special cases that image center assumption may bring wrong
instruction. Xie et al. [35] propose a object prior which calculates the convex hull
of the object and lets its center as l, which obtains a more reasonable and robust
object measure map. We use the two object priors in the saliency control map
respectively, and the discrepancy between them is quite small through quantita-
tive analysis (see Fig. 4(d)). An intuitive example is also given in Fig. 5. Though
the prior maps generated by this two strategies are different (Fig. 5(b) and (d)),
the final results (Fig. 5(c) and (e)) are nearly the same. The experimental results
show the robustness of our NLL0 method to the object prior.

(a) (b) (c) (d) (e) (f)

Fig. 5. Robustness of the object prior. (a)Input image. (b) Object prior map based
on image center [1, 13, 21]. (c) Result of using image center as the object prior. (d)
Object prior map based on convex-hull [18]. (e) Result of using convex-hull center as
the object prior. (f) Ground truth.

4.4 Comparison with State-of-the-art Methods

Our experiments are conducted on ASD, MSRA, ECSSD and iCoseg data sets.
The ASD data set contains 1000 images, is a subset of MSRA which contains a
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (l) (m)

Fig. 6. Visual comparison on MSRA, ECSSD and iCoseg data sets. The top three rows
are selected from MSRA data set, the middle three are from ECSSD data set, and the
last two rows are chosen from iCoseg data set. We compare 9 state-of-the-art methods,
from (b)-(j): CA[1], HC[6], RC[6], CB[13], LR[4], CH[18], MR[19], HS[37] and MC[20].
Saliency maps generated by our algorithm (l) is the closest to the ground truth (m).
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Fig. 7. Performance of the proposed algorithm compared with 20 state-of-the-art meth-
ods on the ASD database. (a), (b) Average precision recall curve by segmenting saliency
maps using fixed thresholds. (c) Mean precision, recall, and F-measure values of the
evaluated methods.

large variation among 5000 images of natural scenes, animals, people, etc. ASD
is publicly available in salient object detection and is evaluated in almost every
saliency paper. ECSSD is a data set with 1000 images, which includes many
semantically meaningful but structurally complex images for evaluation. We use
this data set to show the well-performance of difficult images with complex
backgrounds. The iCoseg data set including 38 groups of 643 images, which is a
publicly available co-segmentation data set. The images in iCoseg may contain
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Fig. 8. Performance of the proposed algorithm compared with 15 state-of-the-art meth-
ods on the MSRA database through average precision recall curve. (a) Comparison on
MSRA data set. (b) Comparison on ECSSD data set. (c) Comparison on iCoseg data
set.
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Fig. 9. Performance of the proposed algorithm compared with 15 state-of-the-art meth-
ods on the MSRA database through mean precision, recall, and F-measure values. (a)
Comparison on MSRA data set. (b) Comparison on ECSSD data set. (c) Comparison
on iCoseg data set.

one or multiple salient objects. We use this data set to evaluate the performance
of multiple salient object detection.

We compare our NLL0 approach with 20 previous methods on ASD, including
12 earlier but classical algorithm: AC[11], FT[12], GB[7], HC[6], IT[8], LC[38],
MSS[39], MZ[9], SR[10], SVO[2], CB[13], RC[6], and recent state-of-the-art al-
gorithms: CA[1], CH[18], GS[3], HS[37], LR[4], MR[19], UFO[5], MC[20].

Visual comparison of selected 9 state-of-the-art approaches is shown in Fig. 6.
As is shown in Fig. 6, our approach can deal with the challenging images with
complex background and also works well on image contains multi-salient objects
(the sixth row in Fig. 6).

Quantitative comparisons on ASD data set are shown in Fig. 7. Fig. 7 (a)
and (b) are the PR-curves of the 20 previous methods applied on ASD. All the
methods are separated into two groups for the purpose of clear visual effect. It is
shown that our approach favorable outperforms other methods, while achieves
similar performance as HS, MR and MC in terms of PR-curve. However, as is
discussed in [34], neither the precision nor recall measure considers the true neg-



Saliency Detection via Nonlocal L0 Minimization 13

ative counts. These measures respond the ability of assigning saliency to salient
regions, but fail to react the ability of detecting the opposite. Our approach not
only successfully assigns saliency to salient regions, but also successfully does
the opposite. Comparison of the eighth to eleventh columns in Fig. 6 demon-
strates the well performance of our approach on generating a well suppressed
background. The time complexity of our algorithm mainly focuses on Gauss-
Seidel iteration in the subproblem of u, and its running time is proportional to
the square of N at each iteration. Since few steps are enough for Gauss-Seidel
strategy to get the desired result in our experiments, so the time complexity of
our algorithm is totally O(N2)4.

We also compare 15 state-of-the-art approaches on MSRA, ECSSD and iCoseg
data sets, for the reason that the relevant codes of some previous approaches
are not publicly available. Fig. 8 and Fig. 9 show the quantitative comparison
through both PR-curve and F-measure. The difference between our method and
others is clear, manifesting that our NLL0 approach can be widely used in dif-
ferent types of images.

5 Conclusion and Future Work

This paper develops a energy minimization based on L0 norm for salient region
detection. We construct a graph based on the k-NN of superpixels in the feature
space. Then, NLL0 is proposed on this graph with saliency control map that
is generated by contrast and object prior. We solve this non-convex minimiza-
tion problem by an iterative strategy based on ADM. Our NLL0 approach is
evaluated on various challenging image sets with comparison to state-of-the-art
techniques to show its superiority for saliency detection. In the future, we plan
to focus on generating semantic features from the image that can better describe
the characteristic of the salient region.
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11. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and

segmentation. In: ICVS. (2008)
12. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient

region detection. In: CVPR. (2009)
13. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object

segmentation based on context and shape prior. In: BMVC. (2011)
14. Mai, L., Niu, Y., Liu, F.: Saliency aggregation: A data-driven approach. In: CVPR.

(2013)
15. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning

to detect a salient object. IEEE T. PAMI 33 (2011) 353–367
16. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC super-

pixels compared to state-of-the-art superpixel methods. IEEE T. PAMI 34 (2012)
2274–2282

17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE T. PAMI 22
(2000) 888–905

18. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-
hull-based center prior. IEEE Signal Processing Letters 20 (2013) 637–640

19. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-
based manifold ranking. In: CVPR. (2013)

20. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing
markov chain. In: ICCV. (2013)

21. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: CVPR. (2013)
22. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency

in images. In: CVPR. (2009)
23. Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV.

(2013)
24. Liu, R., Lin, Z., Shan, S.: Adaptive partial differential equation learning for visual

saliency detection. In: CVPR. (2014)
25. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning 3 (2011) 1–122

26. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive
penalty for low-rank representation. In: NIPS. (2011)



Saliency Detection via Nonlocal L0 Minimization 15

27. Liu, R., Lin, Z., Su, Z.: Linearized alternating direction method with parallel
splitting and adaptive penalty for separable convex programs in machine learning.
In: ACML. (2013)

28. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization.
ACM TOG 30 (2011) 174

29. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image
deblurring. In: CVPR. (2013)

30. Pan, J., Su, Z.: Fast l0-regularized kernel estimation for robust motion deblurring.
IEEE Signal Processing Letters (2013)

31. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted
graphs for image and mesh filtering. In: Scale Space and Variational Methods in
Computer Vision. Springer (2007) 128–139

32. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing.
Multiscale Modeling and Simulation 7 (2008) 1005–1028
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